1 research outputs found

    Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry

    Full text link
    A C++ code for the solution of the relativistic Hartree-Bogoliubov theory in coordinate space is presented. The theory describes a nucleus as a relativistic system of baryons and mesons. The RHB model is applied in the self-consistent mean-field approximation to the description of ground state properties of spherical nuclei. Finite range interactions are included to describe pairing correlations and the coupling to particle continuum states. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. The bisection method is used in the solution of the resulting generalized algebraic eigenvalue problem, and the biconjugate gradient method for the systems of linear and nonlinear algebraic equations, respectively.Comment: PostScript, 32 pages, to be published in Computer Physics Communictions (1997
    corecore